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SUMMARY ]_ _, _--_c_

We develop a new numerical approach to study the spatially evolving instability of the

}: streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow

over the boundary surface with general geometry is removed by using a new conservative form of

the governing equations and an analytical mapping. The numerical scheme uses second-order

backward Euler in time, fourth-order central differences in all three spatial directions, and

boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type

" roughness elements is employed as the test case. Fourier analysis is used to decompose different

Fourier modes of the disturbance. The results show that surface roughness leads to transition at

lower Reynolds number than for smooth channels.

INTRODUCTION

Transition from laminar to turbulent flow is a phenomenon of great importance and practical

interest. Major experimental work in aerodynamics has been pursued to study boundary layer

transition, and this in turn has led to a critical need for further understanding of this fundamental

process. Unfortunately, to date, no reliable methods exist for predicting transition in the presence of

surface roughness, either experimentally or numerically. In fact, there are many factors that affect

transition, such as solid wall temperature, solid wall curvature, pressure gradients, free-stream

disturbance, and surface roughness. There has been some experimental activity dealing with the

effect of both 2-D and 3-D roughness elements on transition from laminar to turbulent flow. For

example, Klebanoff et al showed that surface roughness induces early transition [1]. Also, others

have obtained limited numerical results with 2-D flow [2].

The purpose of the present work is to develop new efficient and easy-to-use methods for

numerical simulation of the effect of surface roughness on flow transition. A new conservative form

of the governing equations is derived. Because of the high sensitivity of transitional flows, a high

order scheme based on our earlier work (cf. [3] - [6]) is developed. For thegrid generation scheme,

an analytical map is used, so the Jacobian'coe_cients are computed exactly. Moreover, we develop

the governing equation in a form that enables a much simpler numerical process.

We impose single and multiple 2-D-type roughness elements on the lower solid wall to test the

effect of surface roughness on flow transition. A Fourier transformation is employed to analyze

different modes of the resulting disturbance. The computational results show that the induced

mean flow distortion and other high frequency waves make the flow more unstable.

• This work was supported by NASA under grant number NAS1-19312.
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GOVERNING EQUATIONS

In this study, the three-dimensional, time-dependent, incompressible Navier-Stokes equations,

which are nondimensionalized by the channel half-height h and the centerline velocity U_ are

considered as the governing equations for 3-D channel flow (Figure 1):

Ou Ouu Our Ouw 1 02u + 02u 02u. OP
-_ +--SE +--5-y-y+ oz Re(O=2 -_y_+ -_z_) + 0--_= o, (1)

Ov Ovu Ovv Ovw 1 (02v 02v 02v. OP
o_+--5-;+--_y + Oz _ o-_+_+_z_)+ o-_:0, (2)

Ow Owu Owv Oww 1 . 02w 02w e92w O P
o-7+--_-_ +--5-y-y+ oz _(-5_ + _-_y_ + Oz_) + -- = °'Oz (3)

Ou Ov Ow

o_ + _ + Oz = o, (4)

where u, v, and w are velocity components in the x-, y-, and z- directions, respectively, P is the

pressure, and Re is the Reynolds number based on the centerline velocity U._. of mean flow, the

channel half-height h, and the viscosity parameter v:

U_h
Re - (5)

V

2.0

L=

z

Figure 1. 3-D channel with a single 2-D-type roughness element.

For the current work, we consider a special mapping

x=_ _=z

y = y(_, r/,¢) or _=_(x,y,z)

z=¢ ¢=_,

which implies that

J _-- _y,

,L = G=O,
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and the final forms of the momentum and continuity equations are:

Ou .OuU OuV cg__W 0 0 10-_ + '7"(--5-(- + _ + --) + (-_ + ,Tx_)P - _Alu = O,

ov .ovu o,,y __w oP 1Air=o,o--_+ rlu(---_--+ _ + _) + _1_Or/ Re

= O,

OU OV OW

o_ +N+-_ -=°'

(6)

(7)

(8)

(9)

for the total flow, or

o_ .o[_(u + Uo)+ _0v]
0---t+ _( 0_

ov o[_(u + Vo)+ ,oU]
o-_+ _( o_

o_ o[_,(u+ uo)+ _ou]
0t +_( 0_

+

for the perturbation flow, where,

+
o[,_(v+ yo)+ u0v] o[u(w + Wo)++ uoW])

ov o¢

1+( +_ )P-_eA_u=0,

o[v(v + Vo)+ roy] o[v(w + Wo)+ voW])+ +
o7 o¢

OP 1

+_ Or/ ReAlV = O,

o[_(v + vo)+ _,oV]'+ O[w(W+ wo) + _,oW])
o_ o¢

+(_/_ + _-_)P - _eeAlw = 0,

(10)

(11)

(12)

OU OV OW

o_ + _ + o¢ - o, (13)

02 2 2 02 02 02 02 0)_0_ = b-_ + (_ + _ + _)b-_ + b-_ + 2_o-_ + 2_'o_ + (_ + _ + _" "

The inverse transformation of the variables under this special mapping becomes

(14)

u = UWy, (15)

w = Wr/u, (16)

v = V-U_-W_. (17)

Here we have seven unknowns (u, v, w, P, U, V, W), seven equations ((6) - (9), (15) - (17)) for

the base flow or total flow, and seven equations ((10)-(13), (15) - (17)) for the perturbation.

Our solution process is outlined as follows:

1. Perform the surface and grid generation process to obtain the required Jacobian coefficients.
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2. Solvesystem(6) - (9) and (15) - (17) to obtain the baseflow solution.

3. Solvesystem(10)-(13) and (15) - (17) to obtain the perturbation solution basedon the above
baseflow.

For the channelflow, though the boundary conditions arequite simple, thereare still some
difficulties weneedto overcome.The so-calledbuffer domain [7] techniqueis usedhere for both the
baseflow and perturbation. For details, see[6]. The boundary condition for the solid wall is the
no-slip boundary condition:

uwau = vwatt = ww_,_ = U,_al_= V_o,,ll= W_o.tl = O. (18)

No boundary condition is needed for the pressure at the solid wall since we use a staggered grid.

For the inflow, Poiseuille flow is imposed at the inlet for the base flow solution, and the

eigenfunctions obtained from the linear stability theory with specified Reynolds number are

employed at the flow inlet for the perturbation. The final outflow boundary conditions are:

* for the base flow,
02U

- 0 forU,

02V
- 0 forV,

0_2
02W

- 0 forW,
0_ 2

(19)

• for the perturbation flow, OU

o_

OV OW

--+N+ o--6=o forV,
02V

- 0 for V,
0_ 2

02W
- 0 for W,

a_ 2
(20)

and the associated u, v, w can similarly be obtained by the inverse transformation (15) - (17).

Periodicity is assumed in the spanwise _-direction.

NUMERICAL PROCEDURE

Surface and Grid Generation

Assume that no stagnation points exist in the computational domain. Solitary type roughness

elements are overlapped on the lower solid wall of the channel to simulate surface roughness. For

the 2-D roughnesse]ements (because the grid is uniform and the domain is periodic in the spanwise

z direction, we need only discuss the 2-D case here), the surface can be expressed as

m

f(x) = _ tqsech2(bt(x - xl)),
1=1

(21)
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where _t is the height of the roughness element, b_ is a parameter for adjusting the curvature rate of

the roughness element, and x_ is the peak point coordinate.

i ....
/ _q ______

_:--_ ___

i

I [ I

(x,y) (x',y') (_,_)

Figure 2. Physical, stretched , and uniform grids.

Our grid generation approach consists of two mappings(see Figure 2):

• from the physical grid that conforms to the rough boundary to the stretched intermediate grid

that is uniform in the x direction but nonuniform in y,

• from the stretched grid to the uniform computational grid.

The resulting mapping from the physical to the uniform computational grid is

Y_ox(a + Y_o_)(Y- f(x))

and its inverse map is

(22)

Y = rla(ym,_x - f(x)) + ymaxf(x)(a + ym,,= - rl) (23)
y,,,..(,_+ y,,,o.- ,7)

where Ym_. is the maximum height of the computational domain and a is the parameter for

adjusting the density of grids near the lower solid wall. The required Jacobian coefficients are

_ v,,,_A_(_ + y,,,_x)(v- y,_) (24)

- v'°_(_ + v"°_)(v"_- f(_)) (2_)

h.[v_.(_ + v) - 1(*)(_ + y_o.)] + 2f:(o + v_ox) (26)
[vm,,_(,,+ v) - f(x)(_, + v,..,_)]_

--2y2axa( a + Ymax)(Ymax -- f(x))

_lvv ---- [Y,nax(a +y) -- f(x)(o'+ ymax)] 3' (27)

_ = _.. = 0. (28)
_2

Here, f.=_and f..=-_-.
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Discretization

In the computational (_, r/, _) space, the grids are uniform. Suppose u, v, w and U, V, W are

defined in terms of a staggered grid in the computational space (see Figure 3). Here, the values of P

are associated with its cell centers, u and U with centers of the cell surfaces parallel to the (_, _)

plane, v and V with centers of the cell surfaces parallel t o th e (_, ¢) plane, and w and W with

centers of the cell surfaces parallel to the (_, r/) plane.

Second-order backward Euler differences are used in the time direction, and fourth-order central

differences are used in space. Details of such an approach can be found in [5]. With those

assumptions, we can write the discretized governing equations symbolically as follows:

AEEUEE + Amu_ + Awuw + Awwuww + ANNUN_V + A_vu_v + Asus + Assuss +

AFFUFF + AFUF + ABUB + ABBUBB --Acuc + DwwPww + DwPw + DEP_ -DcPc =

BEEVEE q- BEVE -b BWVW + Bwwvww + BNNVNN + BNVN + Bsvs + Bssvss +

BFFVFF q- BFVF + BBVB q- BBBVBB -- Bcvc + EssPss + EsPs + ENPN -- EcPc =

CEEWEE -}- CEdE nt CW_)W -[- CWW'WWW q" CNNWNN -[- CNWN -[- CSWS -1- CSSWSS -[-

CFFw;; + CFwF + CBwB + CBBWSB -- Cvwc + FBBPBB + FBPB + FFPF - FcPc =

DUEEUF, E + DUEUE + DUwUw - DUcUc + DVIVNVNN + DVNVN +

DVsVs - DVcVc + DWFFWFF + DWFWF + DWBWB - DWcWc =

,_v = ,l_cUc,

wc = _[° Wv ,
vc = _:c Vo + Yc + _:_ Wo.

v, V

IX_XI,F _'iX_, _-

z>4Y,2

////

w, W

Figure 3. Staggered grid structure in the computational (_, _, _) space.

s_, (29)

s_, (30)

S_, (31)

s.., (n)

(33)
(34)
(35)

The coefficients and source term for the interior points of the discrete (-momentum equation (29)

associated with uc are given as follows:

AEE
1

12ReA_ 2
v_c (UEE+ 2Uo._,),
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4 2_W(UE 2UoE),
AE = 3ReA_2 "_" +

4 2_C(Uw 2U0..),
Aw - 3ReA_2 +-_" +

1 2_yc rrr 2Uoww),
Aww - 12ReA_2 1--2-_ _ww +

ANN -- aC _C "V, 7C
12ReAT?2 + i-_-_( nn + Vo..) 12ReA_]

A N -- 4_c 2_yC(v n 27c
3Rea_ 5-_" + Voo)+-3ReAr]'

As - 4ac 2_7_Crv' 27c
3ReA_?2 + 3--_' " + 170.,) 3ReArl

_c n_c (V_,+ 1Io.) + 7c
Ass -- 12ReA_2 12A_7 12ReA77 '

1 _7_Cluz

AFF -- 12ReA(2 + 1-_ _'vlf + WoH),

4 2_c, W ,
AF -- 3ReA(2 -_l, l + Wol)

4 2_C(wb
AB -- 3ReA¢2 + 3--_" +W_),

1 _%c (Wbb + W0bb),
ABB -- 12ReA(2 12A(

Ac - 3 5 1 ac 1
2at + + -- +

1
DE = -Dww--

27

Dw = Dc -- 24A_'

s_ = -4u_ + _c'-'
2At + _?_c

-P.. + 8P. - 8P_+ P.s+
12A_?

--uoNNV.. + 8UoNV. -- 8uosV_ + uossV_s,
rl_c (

12A_?
I-

-uo_,FW:: + 8uoFW: - 8uo_Wb + Uo_sWbb_
12A(

)

1 (_]_c-uen,_ + 8uen - 8ue, + uo, ÷ -u¢,_,_ + 8u¢,_ - 8u O + uo_).
6Re An _.c A_? (36)

Here, superscripts n and n - 1 are used to indicate values at previous time steps, and the

superscript n + 1, which indicates the current time step, is dropped for convenience. Lower case

subscripts denote the approximate values of the v and w at points where the associated values of u

are located (Figure 4). Other symbols used in the above formulas are as follows:

Ou Ou

= o-7' =
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Figure 4. Neighbor points for _-momentum equation

(U are at the same points as u and are not shown here).

All function values that are required at other than the canonical locations are obtained by

fourth-order interpolation in the computational space. For example (see Figure 5),

Vc = (9(Vc + VNJr-VNW Jr-Vw) - (Ysww-_-VNNWW-t-VSE -_-VNNE))/32, (37)
P, = (9(Ps + Psw) - (PsE + Psww))/16. (38)

The coefficients for the 7- and _- momentum equations are defined in an analogous way, the

discrete continuity equation is developed simply by applying central differences to each terms.

On the solid wall boundary points, we change the _/-direction difference to second order, and

maintain fourth-order in both the _- and _- directions. For more details, see [6].

VN NWW

VSWW

[

VNw VN
I .... T

[
VNNE

VSE

t

!
o OP_ o oo

Psww Psw [ Ps PSE

384

Figure 5. Neighbor points for fourth-order approximation for Yc and P,.
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Line Distributive Relaxation

We use here the same basic line distributive relaxation method developed in our previous work

(cf. [5]), with some modifications. Figure 6 shows the distribution of corrections for the group of

variables that are located in the (_, rl) plane.

The process that we use for solving the discrete system (29)-(35) can be described as follows:

• Freezing P, U, V, W, v, and w, perform point Gauss-Seidel relaxation on (29) over the entire

computational domain to obtain a new u.

• Freezing P, U, V, W, u, and w, perform point Gauss-Seidel relaxation on (30) over the entire

computational domain to obtain a new v.

• Freezing P, U, V, W, u, and v, perform point Gauss-Seidel relaxation on (31) over the entire

computational domain to obtain a new w.

• Use transformation (33)-(35) to obtain new U, V, W.

• For all j = 2,3,...,n_ - 1 at once: change Uijk, Ui+l jk, Vijk,Wi_k,Wij k+l to satisfy the

continuity equations, then update Pijk so that the new U, V, W and P as well as the

associated transferred u, v, w satisfy the three momentum equations.

1

Vi6k -- C6

Vi5k -- 6-5

Ui4k -- _4

_Vi%k = 0
I

P_6k + 76
--_ O

Y 6k+ -

t,
P_sk + 75

r
P_k +_4

V/4k -_- _3 -- h

[
P_k +%

t

Vi+l 6k-_-c6

Vi+l 5k+6-5

Ci+l 4k-_-6-4

Vi+l 3k-[-6-3

Ui2k --6-2 Ci+Â 2k nuC2

Vi2k = 0

Figure 6. Distribution of corrections in the (_, 7/) plane.
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Remark. Since all of the u, v, w have been previously relaxed, and the U, V, W are updated to

perform the latter corrections, we assume that equations (29)-(31) hold exactly. Let c, 5, a and 7

represent the corrections for U, V, W and P, respectively. Thus, for cube ijk, when we distribute

the corrections according to Figure 6, the correction equations corresponding to (29)-(31) are

• " flijk,.,Ui3k y)ijk..,
(A_kr_ "+' _ +_c ',_ )e_-'-'c _ = 0, (39)

-  j+l) - B 5j) Eg% 0, (40)N kuj C \uj-1- -- =

(--'J_--,;k+, _'J_-'_'Jk '- F_k% - 0, (41)t_ F 7_ -_- t_ c yy )u j - =

(DU_ k + DU_k)ej + (DW_ k + DW_k)a_ + Dv_'k(sj - 5j+1) - DV3k(_j_I - _j) = $2 k, (42)

j = 2,3,... ,rig - 1.

This system has 4(nj - 2) equations and 4(nj - 2) variables. Unfortunately, coupling between the

correction variables makes the problem somewhat complicated. To develop a simpler approximate
system, define

with fixed i and k. Then

ej
-- --}

Wxj -- _j

aj

WzJ 5j '

D,jk "" B_k)Sj _ _Ok_ B_I, Sj_Ic (B_ k + _-'N _+_ -

wx_ = "_c_k (A EiJk_,+_ ,_+ _c4iJk_J_)Sj'1_ '

FOk (B_k + Bgk)Sj ,,jk, ,,jk,C -- _u"N Uj+l -- x-'c vj-I

K',ijk_wuk _rw_j _c_Jk (C_ '_+_+ _c ',_ joj

Aijk 3 for high Re and small At, which is much larger than "*E •From (36), we see that -_c "_ _ 40"k

Similarly, _jk "_'C "_ _ and C_ k _ _. These yield

(43)

(44)

With the above approximations, w_ and w_3 can be treated as known parameters, so equation (44)

can be written in terms of the unknowns 53 only:

DVg (DW [(DU_ k + DU_k)w*_ + ,_" N + + +

D_ziJk_ n_ZiJk_ ¢/jk (47)-- "C uj_ 1 -- L,,,N "j+I =--m "

Let

aj = (DU_ k + DU_k)w_.7 + _,_., u + + + DW c )w,3, (48)
_ 1-}iiijk

b_ - --_,N , (49)

c3 = -DV_ _, (50)

j = 2,3,---,n3 - 1.
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Then we obtain the tridiagonal system

a2 b2

C3 a3 b3

• o

C.% -2 an j-2 bn_-2

anj -1 an#- 1

_2

_3

_n_ -2

si2k
m

si2k
m

_rni rt _ - 2 k

S irnnj -1 k

(51)

Thus, 83, j = 2, 3, .• •, nj - 1 can be determined very efficiently• The other velocity corrections are

given by

: j : 2,3,... ,n_ - i.

The u, v, and w are then updated on all cells in the i, k y-line as follows:

Ui+l jk ¢__ Ui+_ jk + ej,

UiJ k _ uiJk - ej,

wiJ k+l _ WiJ k+l + aj,

W ijk 4-- wijk--o'j,

j = 2,3,...,nj - 1,

j = 3,4,... ,nj - 1.

(52)

(53)

Finally, the pressure corrections 7j are determined as follows:

____ Ai2k s_k ..j_ ___['yi2kA_C -t- T _,i_ C

__A.._Aijk "" _{_ A:r_ijk,_c + B_ k S-_ c
1 1 _v_3_ _J'

j = 3,.. . , nj -I.

(54)

(55)

P is then updated via

Pok *-- Pij_ +'Tj,

j = 2,3,...,n3 - 1.

(56)
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COMPUTATIONAL RESULTS

We first tested the code by applying it to single and double roughness elements using a moderate

sized grid. A 170 x 50 × 4 grid, including a five T-S wavelength physical domain and a one

wavelength buffer domain, was used. Considering that Re = 5000 corresponds to a decreasing mode

according to the linear stability theory, we use this Reynolds number in our code to investigate the

effect of roughness elements. Fourier analysis is used to decompose different Fourier modes of the

disturbance. For details about the Fourier transformation approach, see [8].

Let _l -- 0.15 and bl -- V_. For the single roughness case, the peak point is at i = 30; for the

double roughness case, the peak points are at i = 42 and i -- 70. The stretch parameter a is set to

4, and the amplitude of the disturbance c is set to 0.0025x/2' Fi_e7 displays contours 0f the

perturbation streamfunctions, showing that the roughness elements make the disturbance increase

for a certain distance downstream. The results of Fourier transformation given in Figure 8 show

that the mean flow distortion and first and second harmonic waves are amplified over this distance.

To test the effect of multiple elements, a 402 x 66 × 4 grid (including a nine wavelength physical

domain and a one wavelength buffer domain) is used. Here we set _l - 0.12, bl _- 2.0, and a = 4.5.

The first roughness is at i = 82, which is two wavelengths from the inflow boundary. We placed

seven roughness elements in the computational domain, starting from i -- 82 and spared 40 grid

points apart. Figures 9 and 10 depict the contour plots of streamfunctions and vorticities, showing

very clearly that the disturbance is amplified after it passes each element.

(a)

(b)

Figure 7. Contours of perturbation streamfunctions with Re = 5000, _l -- 1.5,

e = 0.0025v_ and 170 × 50 × 4 grid. Flow direction is from left to right.

388



0.050!

= 0.040

0.030
7

0.020

0.010

0.000

0 5 10 15 20 25 30

0.0040

0.0030

0.0020

0.0010

0.0000

0

.... , . . . , .... , .... , . . . , ....

mean flow distortion v o

5 10 15 20 25 3O

l.O

0.8
0.6

7
0.4

0.2
0.0

fundamental

0 5 10 15 20 25 30

0.40

0.30

0.20

0.10

0.00

fundamental wave v I

0 5 10 15 20 25 30

0.40

0.30
f..,

_' 0.20
0

0.I0

0.00

0

first harmonic wave u2

5 10 15 20 25

O.lO
0.08

0.06

0.04

0.02
0.00

30 0 5 10 15 20 25 3O

0.10

= 0.08

0.06
't

0.04

0.02
0.00

second harmonic wave u s 0.04

0.02

0.00

0 5 10 15 20 25 30 O

X

second harmonic wave va

5 10 15 20 25 30

Figure 8. Maximum amplitudes of fundamental wave ul, vl, mean-flow distortion u0, Vo,

first harmonic wave u2, v2, and second harmonic wave u3, v3 for Re = 5000,

sl = 0.15, and e = 0.0025V_ with two roughness elements (grid: 170 × 50 x 4).
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perturbation streamfunction contours

"N

iVflllL._
"[o//llL ,

_ t I_. ]1|IV] I_\ l_'JJ/l\\',,../Jlll_\ _-'

(_)

perturbation vorticit_7 contours

(b)

Figure 9. Contour plots of perturbation streamfunctions and vorticities

for Re : 5000, _l = 0.12, and e = 0.0025v_ with seven roughness

elements (grid: 402 x 66 x 4, flow direction is from left to right).

total streamfunction contours

(a)

spawnwise total vorticity contours

(b)

Figure 10. Contour plots of total streamfunctions and vorticities for

Re = 5000, _;l = 0.12, and c = 0.0025x/_ with seven roughness

elements (grid: 402 x 66 x 4, flow direction is from left to right).
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CONCLUDING REMARKS

As expected on physical grounds, we find that the spatial growth rates of the disturbance

increase when surface roughness is present. Though our work is limited to roughness without

stagnation points in the computational domain, such a scope includes a rather large variety of real

roughness elements. Moreover, the code is very efficient, requiring about 2.68 seconds per time step

for the 402 x 66 x 4 grid case (equivalent to about 26 #s per time step per grid point).
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